
Identification of Performance Characteristics from
Multi-view Trace Analysis

Daniel Spooner1 and Darren Kerbyson2

1 High Performance Systems Group, Dept. Of Computer Science,
University of Warwick, Coventry, UK

dps@dcs.warwick.ac.uk
2 Performance and Architectures Laboratory (PAL), CCS-3

Los Alamos National Laboratory, Los Alamos, USA
djk@lanl.gov

Abstract. In this paper, we introduce an instrumentation and visualisation tool
that can be used to assist in analytical performance model generation. It is in-
tended to provide a means of focusing the interest of the performance specialist,
rather than automating the entire formulation process. The key motivation for
this work was that while analytical models provide a firm basis for conducting
performance studies, they can be time-consuming to generate for large, complex
applications. The tool described in this paper allows trace files from different
runs of an application to be compared and contrasted in order to determine the
relative performance characteristics for critical regions of code. It is envisaged
that the tool will develop to identify and summarise specific performance issues
such as communication strategies through the use of novel visualisation tech-
niques.

1 Introduction

The design and implementation of high-performance systems is a highly complex
problem requiring knowledge of many factors. The peak performance of a system is a
result of the underlying hardware architecture including the processor design, memory
hierarchy, inter-processor and communication system, and their interaction. Moreover,
the achievable performance is dependent upon the workload applied to the system,
and how this workload utilises the resources within the system.

Performance modelling is a key approach that can provide information on the ex-
pected performance of a workload, given a particular architectural configuration. It is
useful throughout the entire system life-cycle: starting at the design stage where no
system is available for measurement, through comparison of systems and procurement,
to implementation, installation and verification, and finally to examine the effects of
system updates over time. At each stage, a performance model can provide an expec-
tation of the achievable performance of the workload with reasonable fidelity.

Performance models are widely used: from large-scale, tightly-coupled systems
through to dynamic and distributed Grid based systems. For instance, performance
modelling is being used to validate the performance during the installation of ASCI Q

at Los Alamos National Laboratory (LANL) [1], to compare the performance of large-
scale systems such as the Earth Simulator [2], and has been used in the procurement of
ASCI purple (expected to be a 100Tflop system). Performance models have also been
applied in dynamic and distributed ‘Grid type’ environments to consider service-
orientated metrics in the provision of resource management services [3] and in the
mapping of business applications to resources [4].

The accuracy of a model, and hence, its effectiveness lie in its ability to capture an
application’s performance behaviour. It is considered advantageous to parameterise a
model in terms of system configuration (e.g. for scalability analysis), and calculation
behaviour (e.g. input data-set size). This allows for the exploration of the performance
space without being specific to a particular ‘performance point’.

It is, however, generally acknowledged that the formation of a performance model
is a complex task. It may involve a thorough code analysis, inspection of important
data structures and analysis of profile and trace data. It can therefore be time-
consuming to generate a detailed model given the large size of many scientific appli-
cations and the relative complexities of advanced data structures and optimised com-
munication strategies. Several semi-automated approaches have been proposed that
aim to make the formation of a performance model a simpler task using ‘black-box’
techniques in which individual performance aspects are observed but not necessarily
understood. Examples include modelling the scaling behaviour of basic-block per-
formance [5] and modelling the memory behaviour of basic-blocks and extrapolating
to other systems [6]. These approaches tend to be specific to a particular processor
configuration and/or problem size.

In this work we consider an approach that aims to simplify the process of generat-
ing a performance model, but not to automate it entirely. The purpose is not to sim-
plify the resultant performance model, nor detract from the skill-set required by the
modeller, but rather remove unnecessary steps during formulation. While the answer
to this question lies, in part, with the experience of the performance-modeller; we
believe that tools can be developed (or adapted) to help locate and focus on the per-
formance critical regions. Such regions are typically those whose execution behaviour
changes when the system configuration or application input-data is varied.

While there are a number of post-analysis and diagnosis tools that can assist with
identifying performance constraints such as bottlenecks [7] and communication pat-
terns [8], many are aimed at resolving problems with the application rather than trying
to characterise the application’s behaviour. In this case, it is useful to identify the
differences in particular idiosyncratic behaviours as well as to detect problems.

A tool is introduced here that uses a combination of static and dynamic call-graph
analysis to attempt to identity regions of code that are sensitive to data-set and scal-
ability variations in order to reduce the time-to-model. It provides a compact view of
multiple executions of an application using colour cues to draw attention to areas of
interest. Although the current implementation is a prototype; it is envisaged that other
methods of visualisation could be employed to summarise large-scale performance
characteristics “at a glance”, such as those used already in code maintenance [9].

The paper is organised as follows: Section 2 describes the approach taken that can
lead to a performance model and identifies areas where tools can assist. Section 3
introduces a tracing tool that can create call-graph trace files for post-analysis using

source-code instrumentation. In Section 4, we describe a further tool that uses the
trace files to create multi-view visualisations. Conclusions and future work is dis-
cussed in Section 5.

2 Identification of Performance Characteristics from Multiple
Executions.

The performance modelling work at Los Alamos National Laboratory to date has
primarily focussed on applications representative of the ASCI (Accelerated Strategic
Computing Initiative) workload where analytical techniques are employed to develop
entire-application models for the large-scale ASCI computing resources. This differs
from a number of other performance activities that tend to focus on smaller applica-
tions in distributed computing environments such as [10]. The Los Alamos models are
used most prominently to explore the scaling behaviour of applications on existing
and speculative future architectures.

The approach to developing a performance model is based upon a detailed under-
standing of the performance effects that occur when changes to the system and appli-
cation configuration are applied. In the initial stages of formulation, the application is
typically executed with fixed input data sizes and a varying number of processing
elements (PE) to observe changes in the overall execution-time and resource use. This
can reveal basic information, such as whether the program scales weakly or strongly.
Likewise, observations can be taken by fixing the PEs and varying the data-set sizes.

Instrumentation and profiling are subsequently used to obtain an understanding of
the code. Highlighting the changes in communication patterns between processors as
the PE count changes can, for example, provide insight into the type and method of
domain decomposition. Instrumentation of this type can reveal message size changes
in SAGE [11], an adaptive mesh hydro code, due to its 1D decomposition, and the
difference in neighbouring processors in Tycho [12], radiation transport code, due to
its use of an unstructured grid.

The problem partitioning, and related messaging, revealed through instrumentation
typically provides a strong indication of the arrangement of the application’s data
structures, which can be confirmed by thorough code analysis of the relevant regions.
Generating static call-graphs can assist with identifying the functional dependencies of
the code sections and dynamic call-graphs (through the use of traces collected at run-
time) can illustrate the flow of execution. In addition, comparing the relative number
of instructions issued for a given subroutine in different runs/iterations can highlight
the impact of configuration change on calculation and computational areas.

The overall objective of these activities is to obtain a model based on timings of
sequential elements parameterised by expressions that are subject to input parameters
and differing levels of parallelism. By identifying messaging, data placement and
computational sensitivity to configuration and data-set sizes, it is possible to locate
regions of the code that can be described by a single timing (for a given architecture)
or by an analytical expression that captures the computation/communication character-
istics with respect to the input parameters. While the approach is based on understand-

ing the application’s behaviour, it is apparent that much of the initial work is based
upon observing the performance effects of input and configuration variation (the dot-
ted region in Figure 1). It is when these effects are compared across configurations
that areas of interest can be brought to the attention of the performance specialist.

RUN CODE

VARY

PARAMETERS
PROFILE /

INSTRUMENT

EXAMINE TRACES

ANALYSE CODE

FORMULATE

MODEL

REFINE

Figure 1. The key stages of model development. Initially the code is run with a set of different
input parameters (e.g. number of assigned processors, data-set sizes) to get a view of its scaling
behaviour. Typically instrumentation or profiling is used to produce trace files that identity
performance critical regions in the code. This is followed by detailed code analysis to formulate
an initial performance model. This can then be refined until a satisfactory level of fidelity (pre-
dicted vs. measured) is obtained

Without losing the depth of detail that the models provide, a suitable tool can assist
with instrumentation and call-graph generation producing a visualisation of the key
differences to indicate “areas of interest”. This can limit the performance modelling
process, allowing a performance specialist to focus on a subset of the application
rather then the entire program.

3 Call-graph Collection

In order to assist the instrumentation, an automatic source-code level modification tool
is used to indicate where and when a subroutine is entered and exited. The tool cur-
rently supports Fortran-77/90 and C. A lightweight profiling library is also used and
linked with the application, which stores subroutine “events” into a page-based list
whenever a subroutine is called. To minimise the overhead, each event records a lim-
ited amount of information including a source-file identifier, source-line number, and
a field to denote that a ‘context’ has been entered into or exited from. As with nested
subroutines, contexts are linked so that when subroutine main calls subroutine init, the
instrumentation library is in the context of both main and init and any events that
occur are associated with both of these contexts. This property is used to reduce the
storage space of the event list as it is constructed dynamically in memory. The event-

list is written to file when the application exits, although it is possible to allow on-line
paging. The trace-file can then be processed by a subsequent utility.

In a similar manner to Paradyn [13], the instrumentation library utilises the concept
of inclusive and exclusive metrics, where inclusive sums a metric for a subroutine and
all its children, while exclusive returns the metric for a subroutine without its children.
Current recordable metrics include subroutine duration and the number of issued in-
structions (if PAPI [14] is available). The instruction count is not used to determine
the amount of work, rather to relate code density between different processors in the
same application, or differences between application runs for the same architecture. In
the case of a particular application run, each subroutine will issue a given number of
instructions; if the input data or configuration is varied it is possible that the instruc-
tion counts will change for a particular subroutine. It is then possible to examine the
differences, or error, to ascertain how the application was effected by the change.

When the application is started, the instrumentation is initially disabled which re-
sults in virtually no overhead. An explicit “PROFILE_START” call is required to
enable the library and store the context changes as necessary. In addition to context
changes, MPI calls are logged as events through the profiling MPI (PMPI) interface
which is connected to the capture library and can assist with identifying the communi-
cation patterns that occur. The relevant parameters (source, destination, collective,
size, type) are stored as part of an MPI event. Currently, only a limited number of MPI
calls are wrapped which covered our test cases; it is reasonably straightforward to
include further commands or to employ a third party tool such as VampirTrace.

EVENT CAPTUREMODIFIED SOURCE CODE

Main() {
 enter_context (…)
 … code …
 call Init()
 … code …
 call Do()
 … code …
 exit_context (…)
}
Init() {
 enter_context (…)
 … code …
 call MPI_INIT (…)
 … code …
 exit_context (…)
}
Do() {
 enter_context (…)
 … code …
 call MPI_BCAST (…)
 … code …
 exit_context (…)
}

TMAIN=0, IMAIN=0

TDO=0, IDO=0

STORE src,dst,len

STORE TDO, IDO

STORE TMAIN, IMAIN

TINIT=0, IINIT=0

Enable MPI Logging

STORE TINIT, IINIT

Figure 2. The instrumented source consists of calls to a backend event capture library. This
library links events together based on context and writes out a text trace file when the applica-
tion quits. On entering a context, a timer and instruction counter is reset. These are then stored
on exit of the context for post-analysis

The process allows rapid instrumentation of the source code with a subsequent
compile, link and run sequence to obtain the required tracing information. The events

that appear are essentially a call-graph of the program and can be subjected to a wide
variety of analysis tools.

The instrumentation method is lightweight, consisting of a few array operations to
store events in order to minimize the performance impact on the application. Depend-
ing upon the page size, periodic memory allocation is required which will incur a
slight performance penalty. However, the principal purpose of this instrumentation
utility is to illustrate the functional operation of the application which can be achieved
by examination of the call-graph and the number of instructions issued, as opposed to
performance-timings which are usually sensitive to experimental error.

4 Multi-view Visualisation

There are a number of visualisation tools that can assist with understanding an appli-
cation’s runtime behaviour. For MPI applications, Vampir provides a large suite of
views that provide a good level of detail. It is essentially possible to “playback” the
application and determine where communication occurs (and which processors are
involved) and where periods of computation occur. However, these tools tend to pro-
duce views of a single application, albeit across many processors. In order to develop
analytical performance models, it is useful to visualise the application behaviour over
various iterations, processors or different runs.

Placing two traces “side-by-side” and allowing a tool to highlight the difference be-
tween the code densities (number of instructions in a subroutine) for two application-
runs (presumably with different input-data sizes) is useful when attempting to identify
critical regions of code. Using this approach, a performance modeller can rapidly
determine if a code region is worth analysing or whether a single timing can be taken.

The tool developed in this work provides a multi-view visualisation of the trace
files. Loading an event file generated by the instrumentation library described in Sec-
tion 3, it reconstructs a complete call-graph of the application and compares it with
subsequently loaded event files. The tool utilises an algorithm that searches for the
largest groups of call-chain (or grouped call-chain) entries to locate similar code-
regions. Entries in the trace files are deemed similar if the call-graph nodes match and
that the instruction counts are close to a given sensitivity. Where entries differ or are
non-existent, colour cues are used to highlight changes to the performance modeller.

When event-files are loaded, they can be linked together using a control panel to
associates relevant view-options. The tool permits some filtering which allows the
user to view MPI collectives, point-to-point functions and normal context (subrou-
tines). A ‘hotspot’ slider allows the user to highlight portions of the trace where the
inclusive number of instructions as a percentage of the overall total, is above the
threshold percentage. The ‘sensitivity’ slider allows the user to set the extent to which
the number of issued instructions in the first trace can deviate from the second. In
tests, we found that a value of around 5% highlighted the regions of the call graph that
altered significantly during a change in configuration. The current implementation
places limitations on the size of the trace-files that can be examined at any given time.
Schemes to partition the trace-files are employed to reduce the computational and

memory overhead of examining the traces. This includes viewing a single iteration of
an application (which requires a small manual modification to the source code) or
post-processing the files to follow the chains to a given depth.

The screenshots shown in Figures 3 and 4 illustrate traces that were loaded into the
tool and visualised. Figure 3 demonstrates the comparative algorithm attempting to
identify the largest similar run within the call-graph and creating links to the next
trace. Where calls have not been made, they are highlighted in red and the link cursor
between the traces points to where they should exist in the second trace. Where calls
exist that are not in the second trace, they are highlighted in yellow and again link to
where they are expected. The common colour, blue, indicates sections that exist in
both traces but are different (i.e. instructions issued differ by a given threshold). The
tool allows a chain of comparisons to be established, so that trace 1 is compared with
2, 2 with 3 and so on. It is assumed that the call-chains are broadly similar (such as
differences in loop counts, conditionals, and communication patterns). Where multiple
traces are entirely different, the tool effectiveness would be limited.

Figure 3. Visualisation screenshot comparing three iterations of the same application on the
same processor. Where regions match, but have differences (such as the number of issued
instructions), the tool connects and highlights the sections using colour cues. Regions that have
been removed or added are also identified.

In addition to viewing the call graph, the tool is able to group call points together to
obtain a frequency view of the application’s trace. This is useful for grouping similar
communications together and fits well with the combined analytical expressions that
describe the overall application. Figure 4 illustrates this effect with traces from the
Sweep3D ASCI demonstrator application. These are also subject to the same high-
lighting, so it is immediately obvious where one application has spent more time in a
particular subroutine or exhibited different communication behaviour.

Figure 4. Visualisation screenshot comparing consolidated traces for two processes in a single
iteration of Sweep3D. The tool has highlighted an area where change is identified: in this case,
the communications patterns are different due to rank placement in a 2x6 processor grid.

Table 1. Example identifiable performance features from visualization tool.

Example Characteristic

Tool Assistance

Calculation impact due to data-
set change.

• Highlighting of relative difference in in-
struction counts in similar regions of the
call-graph.

• Highlighting of relative difference in mes-
sage sizes between PEs.

Data-placement differences due
to variation in PE count.

• Highlighting of changes in communication
patterns (source, destination) as topology
is changed to account for configuration.

Functional differences in appli-
cation iterations.

• Highlighting of new/deleted regions in
call-graph and differences in frequency
views.

Together the tools allow a performance modeller to rapidly profile a code, run it

under different configurations (such as on a 4x4 processor network, and then on 8x8
network) and then load in the traces to analyse the result for particular performance
characteristics (see Table 1). In the case of moving from one processor arrangement to

another, it is likely that the communication patterns will be different and, if the appli-
cation scales weakly, large differences in the computation sections and message sizes.
These visual cues aim to provide an effective summarised view of the program’s dy-
namic operation. Once alerted to a particular region of code that appears sensitive to a
particular change it is possible to direct attention to that part of the program which can
ultimately assist in constructing the performance model.

The problem with viewing traces in this format is that screen estate is typically lim-
ited and it only takes a few traces to become impractical. In order to see more detail,
the traces must be reduced into a more compact form and we envisage using individ-
ual pixels to visualise events in the trace-files. Displaying traces at this density should
an observer to rapidly distinguish areas of interest and then “drill down” to view the
relevant code.

5 Future Work and Conclusions

The approach described in this paper utilises dynamic trace files and a multi-view
visualisation tool to highlight areas of interest when input parameters, data-sets and
resource configurations are modified. By focusing on the areas of a code that are sen-
sitive to configuration and input data, some of the drudgery is removed in terms of
isolating the critical regions that govern the performance characteristic of an applica-
tion.

Future developments of this approach include developing the visualisation tool to
utilise the Vampir trace facility which is widely utilised in parallel performance stud-
ies. Additional work will focus on utilising exotic forms of visualisation to obtain
compact views of multiple trace files relating to different performance scenarios.

Acknowledgements

Los Alamos National Laboratory is operated by the University of California for the
National Nuclear Security Administration of the US Department of Energy.

References

 1. Kerbyson, D.J., Hoisie, A., Wasserman, H.J.: Use of Predictive Performance
Modelling During Large-Scale System Installation, in Proc. PACT-SPDSEC02,
Charlottesville, VA. (September 2002)

 2. Kerbyson, D.J., Hoisie, A., Wasserman, H.J.: A Comparison Between the Earth
Simulator and AlphaServer Systems using Predictive Application Performance
Models, Computer Architecture News, ACM (December 2002)

 3. Spooner, D.P., Jarvis, S.A., Cao, J., Saini, S., Nudd, G.R.: Local Grid Scheduling
Techniques using Performance Prediction, IEE Proc. - Computers and Digital
Techniques (2003)

 4. Perry, S.C., Grimwood, R.H., Kerbyson, D.J., Papaefstathiou, E., Nudd, G.R.:
Performance Optimisation of Financial Option Calculations, Parallel Computing,
26(5), Elsvier (2000) 623-639

 5. Mellor-Crummey, J., Marin, G.: Building Parameterized Models for Black-Box
Applications, in Proc. Los Alamos Computer Science Institute Symposium
(LACSI), Santa Fe (October 2002)

 6. Snavely, A, Carrington, L., Purkayastha, A., et. al.: A Framework for Application
Performance Modeling and Prediction, in Proc. SC2002, Baltimore (2002)

 7. Cain, H.W., Miller, B.P., Wylie, B.J.N.: A Callgraph-based Search Strategy for
Automated Performance Diagnosis, Concurrency and Computation: Practice and
Experience 14 (2002) 203-217.

 8. Vampir, Pallas. http://www.pallas.com/e/products/vampir/index.htm
 9. Eick, S.C., Steffen, J.L., Sumner, E.E.: Seesoft-A Tool for Visualizing Line Ori-

ented Software Statistics, IEEE Trans. on Software Eng., 18(11) (1992) 957-968
 10. Nudd, G.R., Kerbyson, D.J., et.al.: PACE: A Toolset for the Performance Predic-

tion of Parallel and Distributed Systems, Int. J. of High Performance Computing
Applications 14 (2000) 228-251

 11. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings,
M.L.: Predictive Performance and Scalability Modeling of a Large-scale Applica-
tion, in Proc. SC2001, Denver (2001)

 12. Kerbyson, D.J., Hoisie, A., Pautz, S.D.: Performance Modeling of Deterministic
Transport Computations, in Performance Analysis and Distributed Computing,
Kluwer (2003)

 13. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.E.,
Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Per-
formance Measurement Tool, IEEE Computing 28(11) (1995) 37-46

 14. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming
Interface for Performance Evaluation on Modern Processors, Int. J. of High Per-
formance Computing Applications 14(3) (2000) 189-204

